Orthogonal projection of a vector onto another vector, the result is a vector. Meanwhile, the length of an orthogonal vector projection of a vector onto another vector always has a positive real number/scalar value.

In this article we will discuss vector projections, especially orthogonal (perpendicular) vector projections. Orthogonal projection of a vector onto another vector, the result is a vector. Meanwhile, the length of the projection of an orthogonal vector on another vector is always a positive real number/scalar. vector-projection The orthogonal projection of vector u⃗\vec{u} on vector v⃗\vec{v} can be denoted by u⃗v⃗{\vec{u}}_{\vec{v}} or p⃗\vec{p} and is defined by the following argument.

Proposition:

  1. Projeksi scalar orthogonal uβƒ—\vec{u} falls on vβƒ—\vec{v} adalah ∣∣pβƒ—βˆ£βˆ£=uβƒ—β‹…vβƒ—βˆ£vβƒ—βˆ£\left| \left| \vec{p}\right| \right|=\frac{\vec{u}\cdot\vec{v}}{\left| \vec{v}\right|}
  2. The projection of the vector uβƒ—\vec{u} onto the vector vβƒ—\vec{v} is the vector uβƒ—vβƒ—=(uβƒ—β‹…vβƒ—βˆ£.vβƒ—βˆ£2)vβƒ— atau pβƒ—=uβƒ—βˆ£vβƒ—βˆ£βˆ£βˆ£pβƒ—βˆ£βˆ£{\vec{u}}_{\vec{v}}=\left( \frac{\vec{u } \cdot \vec{v}}{\left|. \vec{v} \right|^2} \right)\vec{v}\text{ atau } \vec{p}=\frac{\vec{u }}{\left| \vec{v} \right|} \left| \left| \vec{p} \right| \right|
  3. Panjang project vector uβƒ—\vec{u} to vector vβƒ—\vec{v} adalah ∣uβƒ—vβƒ—βˆ£=∣uβƒ—β‹…evβƒ—βˆ£ \lvert \vec{u}_{\vec{v}}\rvert=\left| \vec{u}\cdot e_{\vec{v}} \right| dengan evβƒ—e_{\vec{v}} adalah vector satuan ke arah vβƒ—\vec{v} atau ∣uβƒ—vβƒ—βˆ£=∣uβƒ—.vβƒ—βˆ£vβƒ—βˆ£βˆ£\left| \vec{u}_{\vec{v}} \right|=\left| \frac{\vec{u}.\vec{v}}{\left| \vec{v} \right|} \right| .

Example 1:

Given aβƒ—=2i^βˆ’6j^βˆ’3k^\vec{a}=2\widehat{i}-6\widehat{j}-3\widehat{k} and bβƒ—=4i^+2j^βˆ’4k^\vec{b}=4\widehat{i}+2\widehat{j} -4\widehat{k}. Determine:

  1. The length of the vector projection a⃗\vec{a} on b⃗\vec{b}
  2. Orthogonal projection of vector a⃗\vec{a} on b⃗\vec{b}
  3. Orthogonal projection of vector b⃗\vec{b} on a⃗\vec{a}

Alternative Solutions:

  1. The length of the vector projection aβƒ—\vec{a} on bβƒ—\vec{b} ∣aβƒ—bβƒ—βˆ£=∣aβƒ—.bβƒ—βˆ£bβƒ—βˆ£βˆ£=∣(2i^βˆ’6j^βˆ’3k^)β‹…(4i^+2j^βˆ’4k^)42+22+(βˆ’4)2∣=∣(2)(4)+(βˆ’6)(2)+(βˆ’3)(βˆ’4)16+4+16∣=∣8βˆ’12+1236∣=∣86∣\begin{align*} \left| \vec{a}_{\vec{b}} \right|=\left| \frac{\vec{a}.\vec{b}}{\left| \vec{b} \right|} \right|&=\left| \frac{(2\widehat{i}-6\widehat{j}-3\widehat{k})\cdot (4\widehat{i}+2\widehat{j}-4\widehat{k})}{\sqrt{{{4}^{2}}+{{2}^{2}}+{{(-4)}^{2}}}} \right| \\ &=\left| \frac{(2)(4)+(-6)(2)+(-3)(-4)}{\sqrt{16+4+16}} \right| \\ &=\left| \frac{8-12+12}{\sqrt{36}} \right|=\left| \frac{8}{6} \right| \end{align*} ∴∣aβƒ—bβƒ—βˆ£=43 \therefore \left| \vec{a}_{\vec{b}} \right|=\frac{4}{3}

  2. Orthogonal projection of vector a⃗\vec{a} on b⃗\vec{b}
    aβƒ—bβƒ—=∣∣aβƒ—bβƒ—βˆ£βˆ£bβƒ—βˆ£bβƒ—βˆ£\vec{a}_{\vec{b}}=\left| \left| \vec{a}_{\vec{b}} \right| \right|\frac{\vec{b}}{\left| \vec{b} \right|}, karena ∣bβƒ—βˆ£=6\left| \vec{b} \right|=6 dan ∣∣aβƒ—bβƒ—βˆ£βˆ£=43\left| \left| {{\vec{a}}_{\vec{b}}} \right| \right|=\frac{4}{3}
    aβƒ—bβƒ—=43.4i^+2j^βˆ’4k^6=89i^+49j^βˆ’89k^\begin{align*} \vec{a}_{\vec{b}}&=\frac{4}{3}.\frac{4\widehat{i}+2\widehat{j}-4\widehat{k}}{6} \\ & =\frac{8}{9}\widehat{i}+\frac{4}{9}\widehat{j}-\frac{8}{9}\widehat{k} \end{align*}

  3. Orthogonal projection of vector b⃗\vec{b} on a⃗\vec{a}
    bβƒ—aβƒ—=(bβƒ—β‹…aβƒ—βˆ£aβƒ—βˆ£2)aβƒ—=(4i^+2j^βˆ’4k^)β‹…(2i^βˆ’6j^βˆ’3k^)(22+(βˆ’6)2+(βˆ’3)2)2(2i^βˆ’6j^βˆ’3k^)=(4)(2)+(2)(βˆ’6)+(βˆ’4)(βˆ’3)22+(βˆ’6)2+(βˆ’3)2(2i^βˆ’6j^βˆ’3k^)=849(2i^βˆ’6j^βˆ’3k^)bβƒ—aβƒ—=1649i^βˆ’4849j^βˆ’2449k^)\begin{align*}\vec{b}_{\vec{a}}&=\left( \frac{\vec{b}\cdot \vec{a}}{{{\left| \vec{a} \right|}^{2}}} \right)\vec{a} \\ &=\frac{(4\widehat{i}+2\widehat{j}-4\widehat{k})\cdot (2\widehat{i}-6\widehat{j}-3\widehat{k})}{{{\left( \sqrt{{{2}^{2}}+{{(-6)}^{2}}+{{(-3)}^{2}}} \right)}^{2}}}(2\widehat{i}-6\widehat{j}-3\widehat{k}) \\ &=\frac{(4)(2)+(2)(-6)+(-4)(-3)}{{{2}^{2}}+{{(-6)}^{2}}+{{(-3)}^{2}}}(2\widehat{i}-6\widehat{j}-3\widehat{k}) \\ &=\frac{8}{49}(2\widehat{i}-6\widehat{j}-3\widehat{k}) \\ \vec{b}_{\vec{a}}&=\frac{16}{49}\widehat{i}-\frac{48}{49}\widehat{j}-\frac{24}{49}\widehat{k})\end{align*}

example 2

Given the vectors uβƒ—=(βˆ’1,1,βˆ’4) \vec{u} = (-1,1,-4) and vβƒ—=(2,βˆ’1,3) \vec{v} = ( 2, -1,3) . Determine the scalar projection and vector projection (2uβƒ—+3vβƒ—) (2\vec{u} + 3\vec{v}) falls βˆ’2vβƒ— -2\vec{v} !
Solution:
for example:
aβƒ—=(2uβƒ—+3vβƒ—)=(βˆ’2,2,βˆ’8)+(6,βˆ’3,9)=(4,βˆ’1,1) \vec{a} = (2\vec{u} + 3\vec{v}) = (-2,2,-8) + ( 6, -3,9) = (4, -1 , 1)
bβƒ—=βˆ’2vβƒ—=(βˆ’4,2,βˆ’6) \vec{b} = -2 \vec{v} = (-4, 2,-6)

  • Determine the scalar projection aβƒ— \vec{a} on bβƒ— \vec{b}
    Projective scalar =aβƒ—.bβƒ—βˆ£bβƒ—βˆ£=4.(βˆ’4)+(βˆ’1).2+1.(βˆ’6)(βˆ’4)2+22+(βˆ’6)2=βˆ’16βˆ’2βˆ’6 sqrt16+4+36=βˆ’2456=βˆ’245656 &=βˆ’3756\begin{align*}\text{Projective scalar } &= \frac{\vec{a}.\vec{b}}{|\vec{b}|} \\&= \frac{4 .(-4) + (-1). 2 + 1. (-6)}{\sqrt{(-4)^2 + 2^2 + (-6)^2} } \\&= \frac{-16 - 2 - 6}{\ sqrt{16 + 4 + 36 } } \\&= \frac{-24}{\sqrt{56} } \\&= \frac{-24}{56} \sqrt{56} \ \&= -\frac{3}{7} \sqrt{56}\end{align*}
    ∴\therefore so the scalar projection is βˆ’3756 -\frac{3}{7} \sqrt{56} .
  • Determine the projection of the vector aβƒ— \vec{a} on bβƒ— \vec{b}
    Proyeksi vector =(aβƒ—.bβƒ—βˆ£bβƒ—βˆ£2)bβƒ—=(βˆ’24(56)2)(βˆ’4,2,βˆ’6)=(βˆ’2456)(βˆ’4,2,βˆ’6)=(βˆ’37)(βˆ’4,2,βˆ’6)=(127,βˆ’67,187)\begin{align*}\text{Proyeksi vector } &= \left( \frac{\vec{a}.\vec{b}}{|\vec{b}|^2} \right) \vec{b}\\&= \left( \frac{-24}{(\sqrt{56})^2} \right) ( -4, 2,-6)\\&= \left( \frac{-24}{56} \right) ( -4, 2,-6)\\ &= \left( -\frac{3}{7} \right) ( -4, 2,-6)\\&= \left( \frac{12}{7}, -\frac{6}{7}, \frac{18}{7} \right)\end{align*}
    ∴\therefore so, the vector projection is (127,βˆ’67,187) \left( \frac{12}{7}, -\frac{6}{7}, \frac{18}{7} \right) .

Example 3

Diketahui vector pβƒ—=2iβƒ—+jβƒ—+2kβƒ— \vec{p} = 2\vec{i}+\vec{j} +2\vec{k} dan qβƒ—=3iβƒ—+bjβƒ—+kβƒ— \vec{q} = 3\vec{i} + b\vec{j} + \vec{k} . If ∣rβƒ—βˆ£ |\vec{r}| adalah panjang projeksi vector qβƒ— \vec{q} on pβƒ— \vec{p} and ∣rβƒ—βˆ£=4 |\vec{r}| = 4 , then determine the value of b b !
Solution:
Given the vectors p⃗=(2,1,2) \vec{p} = (2, 1, 2) and q⃗=(3,b,1) \vec{q} = (3, b, 1) .

  • Determining the value of b b by orthogonal projection qβƒ— \vec{q} on pβƒ— \vec{p} :
    Panjang proyeksi =∣qβƒ—.pβƒ—βˆ£pβƒ—βˆ£βˆ£βˆ£rβƒ—βˆ£=∣qβƒ—.pβƒ—βˆ£pβƒ—βˆ£βˆ£4=∣2.3+1.b+2.122+12+22∣4=∣b+89∣4=∣b+83∣∣b+8∣=12b=4∨b=βˆ’20\begin{align*}\text{Panjang proyeksi } &= \left| \frac{\vec{q}.\vec{p}}{|\vec{p}|} \right|\\|\vec{r}| &= \left| \frac{\vec{q}.\vec{p}}{|\vec{p}|} \right|\\4 &= \left| \frac{ 2.3 + 1.b + 2.1 }{ \sqrt{2^2 + 1^2 + 2^2 } } \right|\\4 &= \left| \frac{ b + 8 }{ \sqrt{9} } \right|\\4 &= \left| \frac{ b + 8 }{ 3 } \right| \\| b + 8 | &= 12 \\ b &= 4 \vee b = -20 \end{align*}
    So, the possible values ​​of b b are b=βˆ’20 b = -20 or b=4 b = 4 .

Example 4

Determine the projection of the vector aβƒ—=(2,0,1) \vec{a} = (2,0,1) on the vector bβƒ— \vec{b} which is parallel and equal in length but in the opposite direction to vector cβƒ—=(0,2,βˆ’2) \vec{c} = (0, 2, -2 ) !
Solution:
Diketahui vector bβƒ—=βˆ’cβƒ—=βˆ’(0,2,βˆ’2)=(0,βˆ’2,2) \vec{b} = - \vec{c} = -(0, 2, -2) = (0, -2, 2) .

  • Determine the projection of the vector aβƒ— \vec{a} on bβƒ— \vec{b} :
    Proyeksi vector =(aβƒ—.bβƒ—βˆ£bβƒ—βˆ£2)bβƒ—=(2.0+0.(βˆ’2)+1.2(02+(βˆ’2)2+22)2)(0,βˆ’2,2)=(2(8)2)(0,βˆ’2,2)=(28)(0,βˆ’2,2)=(14)(0,βˆ’2,2)=(0,βˆ’12,12)\begin{align*}\text{Proyeksi vector } &= \left( \frac{\vec{a}.\vec{b}}{|\vec{b}|^2} \right) \vec{b} \\&= \left( \frac{2.0 + 0. (-2) + 1.2}{(\sqrt{0^2 + (-2)^2 + 2^2 })^2 } \right) (0, -2, 2)\\&= \left( \frac{2}{(\sqrt{8 })^2 } \right) (0, -2, 2)\\ &= \left( \frac{2}{8 } \right) (0, -2, 2) \\&= \left( \frac{1}{4 } \right) (0, -2, 2)\\&= \left( 0, -\frac{1}{2} , \frac{1}{2} \right) \end{align*}
    So, the resulting vector projection is (0,βˆ’12,12) \left( 0, -\frac{1}{2} , \frac{1}{2} \right) .