Orthogonal projection of a vector onto another vector, the result is a vector. Meanwhile, the length of an orthogonal vector projection of a vector onto another vector always has a positive real number/scalar value.
In this article we will discuss vector projections, especially orthogonal (perpendicular) vector projections.
Orthogonal projection of a vector onto another vector, the result is a vector. Meanwhile, the length of the projection of an orthogonal vector on another vector is always a positive real number/scalar.
The orthogonal projection of vector u on vector v can be denoted by uvβ or pβ and is defined by the following argument.
Proposition:
Projeksi scalar orthogonal u falls on v adalah β£β£pββ£β£=β£vβ£uβ vβ
The projection of the vector u onto the vector v is the vector uvβ=(β£.vβ£2uβ vβ)v atau pβ=β£vβ£uββ£β£pββ£β£
Panjang project vector u to vector v adalah β£uvββ£=β£uβ evββ£ dengan evβ adalah vector satuan ke arah v atau β£uvββ£=ββ£vβ£u.vββ .
Example 1:
Given a=2iβ6jββ3k and b=4i+2jββ4k. Determine:
The length of the vector projection a on b
Orthogonal projection of vector a on b
Orthogonal projection of vector b on a
Alternative Solutions:
The length of the vector projection a on bβabββ=ββbβa.bβββ=β42+22+(β4)2β(2iβ6jββ3k)β (4i+2jββ4k)ββ=β16+4+16β(2)(4)+(β6)(2)+(β3)(β4)ββ=β36β8β12+12ββ=β68ββββ΄βabββ=34β
Orthogonal projection of vector a on b abβ=ββabββββ£bβ£bβ, karena βbβ=6 dan ββabβββ=34β abββ=34β.64i+2jββ4kβ=98βi+94βjββ98βkβ
Orthogonal projection of vector b on a baβbaββ=(β£aβ£2bβ aβ)a=(22+(β6)2+(β3)2β)2(4i+2jββ4k)β (2iβ6jββ3k)β(2iβ6jββ3k)=22+(β6)2+(β3)2(4)(2)+(2)(β6)+(β4)(β3)β(2iβ6jββ3k)=498β(2iβ6jββ3k)=4916βiβ4948βjββ4924βk)β
example 2
Given the vectors u=(β1,1,β4) and v=(2,β1,3) . Determine the scalar projection and vector projection (2u+3v)
falls β2v! Solution: for example: a=(2u+3v)=(β2,2,β8)+(6,β3,9)=(4,β1,1) b=β2v=(β4,2,β6)
Determine the scalar projection a on b Projective scalar β=β£bβ£a.bβ=(β4)2+22+(β6)2β4.(β4)+(β1).2+1.(β6)β=sqrt16+4+36β16β2β6β=56ββ24β=56β24β56β&=β73β56ββ β΄ so the scalar projection is β73β56β.
Determine the projection of the vector a on b Proyeksi vector β=(β£bβ£2a.bβ)b=((56β)2β24β)(β4,2,β6)=(56β24β)(β4,2,β6)=(β73β)(β4,2,β6)=(712β,β76β,718β)β β΄ so, the vector projection is (712β,β76β,718β).
Example 3
Diketahui vector pβ=2i+jβ+2k dan qβ=3i+bjβ+k. If β£rβ£ adalah panjang projeksi
vector qβ on pβ and β£rβ£=4, then determine the value of b! Solution: Given the vectors pβ=(2,1,2) and qβ=(3,b,1) .
Determining the value of b by orthogonal projection qβ on pβ : Panjang proyeksi β£rβ£444β£b+8β£bβ=ββ£pββ£qβ.pβββ=ββ£pββ£qβ.pβββ=β22+12+22β2.3+1.b+2.1ββ=β9βb+8ββ=β3b+8ββ=12=4β¨b=β20β So, the possible values ββof b are b=β20 or b=4.
Example 4
Determine the projection of the vector a=(2,0,1) on the vector b which is parallel and equal in length but in the opposite direction to
vector c=(0,2,β2) ! Solution: Diketahui vector b=βc=β(0,2,β2)=(0,β2,2).
Determine the projection of the vector a on b : Proyeksi vector β=(β£bβ£2a.bβ)b=((02+(β2)2+22β)22.0+0.(β2)+1.2β)(0,β2,2)=((8β)22β)(0,β2,2)=(82β)(0,β2,2)=(41β)(0,β2,2)=(0,β21β,21β)β So, the resulting vector projection is (0,β21β,21β).