A comprehensive guide to understanding and applying fundamental vector operations in mathematics and physics. Learn about vector addition, subtraction in geometric perspektive

1. Addition of Two Vectors

The sum of two or more vectors is called the result vector or resultant. Geometrically, there are 2 rules for adding two vectors, namely:

  1. Triangle rule

    Triangle Rule

  2. Parallelogram rule

    Parallelogram Rules

On Vector summation occurs:

  1. Commutative property
    aβ€Ύ+bβ€Ύ=bβ€Ύ+aβ€Ύ \overline{a}+\overline{b}=\overline{b}+\overline{a}
  2. Associative properties
    (aβ€Ύ+bβ€Ύ)+cβ€Ύ=aβ€Ύ+(bβ€Ύ+cβ€Ύ) \left( \overline{a}+\overline{b} \right)+\overline{c}=\overline{a}+\left( \overline{b}+\overline{c} \right)
  3. Identity element, namely the zero vector
    aβ€Ύ+0β€Ύ=aβ€Ύ=0β€Ύ+aβ€Ύ \overline{a}+\overline{0}=\overline{a}=\overline{0}+\overline{a}
  4. Inverse add
    aβ€Ύ+(βˆ’aβ€Ύ)=0β€Ύ \overline{a}+(-\overline{a})=\overline{0}

2. Resultant of several vectors

Remembering the triangle rule and the associative nature of adding vectors, we can add vectors using polygons. Resultan Vector

3. Difference of Two Vectors

The difference between two vectors means adding the first vector to the opposite (negative) second vector. aβ€Ύβˆ’bβ€Ύ=aβ€Ύ+(βˆ’bβ€Ύ) \overline{a}-\overline{b}=\overline{a}+(-\overline{b}) aβ€Ύ \overline{a} minus bβ€Ύ \overline{b} equals aβ€Ύ \overline{a} plus the opposite of bβ€Ύ \overline{b} . This is explained geometrically as follows Difference of Two Vectors

4. Multiplication of Vectors with Scalars

The product of a vector aβ€Ύ \overline{a} with a scalar k is a vector whose length is k times the length of the vector aβ€Ύ \overline{a} and whose direction depends on the value of k. Vector Multiplication From image ABβ†’=aβ€Ύ, CDβ†’=2aβ€Ύ, QPβ†’=βˆ’aβ€Ύ, \overrightarrow{AB}=\overline{a},\text{ }\overrightarrow{CD}=2\overline{a},\text{ }\overrightarrow{QP}=-\overline{a}, dan KRβ†’=βˆ’3aβ€Ύ \overrightarrow{KR}=-3\overline{a} maka CDβ†’=2ABβ†’ \overrightarrow{CD}=2\overrightarrow{AB} dan KRβ†’=3QPβ†’ \overrightarrow{KR}=3\overrightarrow{QP} atau KRβ†’=βˆ’3ABβ†’ \overrightarrow{KR}=-3\overrightarrow{AB} .
From this it can be understood that there are 3 possible products of a vector with a scalar k, namely

  1. If k>0 k>0 then k.aβ€Ύ k.\overline{a} is a vector whose length k k times Vector aβ€Ύ \overline{a} and is in the same direction as aβ€Ύ \overline{a}
  2. If k=0 k=0 then k.aβ€Ύ k.\overline{a} is a zero Vector
  3. If k<0 k<0 then k.aβ€Ύ k.\overline{a} is a vector whose length is k k times Vector aβ€Ύ \overline{a} and is in the opposite direction to aβ€Ύ \overline{a}

If aβ€Ύ \overline{a} is a non-zero vector and n,p∈R n,p\in R then it applies:

  1. naβ€Ύ=∣n∣.∣aβ€Ύβˆ£ n\overline{a}=\left| n \right|.\left| \overline{a} \right|
  2. n(βˆ’aβ€Ύ)=βˆ’naβ€Ύ n(-\overline{a})=-n\overline{a}
  3. naβ€Ύ=aβ€Ύn n\overline{a}=\overline{a}n
  4. (np)aβ€Ύ=n(paβ€Ύ) (np)\overline{a}=n(p\overline{a})
  5. (n+p)aβ€Ύ=naβ€Ύ+paβ€Ύ (n+p)\overline{a}=n\overline{a}+p\overline{a}
  6. n(aβ€Ύ+bβ€Ύ)=naβ€Ύ+nbβ€Ύ n(\overline{a}+\overline{b})=n\overline{a}+n\overline{b}

5. Position Vector

The position vector of point A with respect to center O is written OAβ†’ \overrightarrow{OA} or aβ€Ύ \overline{a} . The figure shows the positions of points A, B, and C with respect to center O, written OAβ†’,OBβ†’, \overrightarrow{OA},\overrightarrow{OB}, and OCβ†’ \overrightarrow{OC} . The vectors OAβ†’,OBβ†’, \overrightarrow{OA},\overrightarrow{OB}, and OCβ†’ \overrightarrow{OC} are called the position vectors of points A, B, and C. The position vectors of points A, B, and C are often written in lower case aβ€Ύ,bβ€Ύ, \overline{a},\overline{b}, and cβ€Ύ \overline{c} . Position Vector Pay attention to βˆ†ABO, it can be seen that ABβ†’=AOβ†’+OBβ†’ABβ†’=βˆ’OAβ†’+OBβ†’ABβ†’=OBβ†’βˆ’OAβ†’ \begin{align*} \overrightarrow{AB}=\overrightarrow{AO}+\overrightarrow{OB} \\ \overrightarrow{AB}=-\overrightarrow{OA}+\overrightarrow{OB} \\ \overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA} \end{align*} ∴ABβ†’=bβ€Ύβˆ’aβ€Ύ \therefore \overrightarrow{AB}=\overline{b}-\overline{a}

Example

Example of vector drawing

Given the vectors aβ€Ύ,bβ€Ύ, \overline{a},\overline{b}, and cβ€Ύ \overline{c} are depicted as follows Drawing Vector Draw the vector diagram above showing 2aβ€Ύ+12bβ€Ύβˆ’23cβ€Ύ 2\overline{a}+\frac{1}{2}\overline{b}-\frac{2}{3}\overline{c} Alternative solutions Drawing Answer Vector

Example of vector proof using addition rules

Prove by the addition rule that AD→+BC→=AC→+BD→ \overrightarrow{AD}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{BD}

Alternative Solution
(ADβ†’+BCβ†’)βˆ’(ACβ†’+BDβ†’)=Oβ†’ADβ†’+BCβ†’βˆ’ACβ†’βˆ’BDβ†’=Oβ†’(ADβ†’βˆ’ACβ†’)+(BCβ†’βˆ’BDβ†’)=Oβ†’(CAβ†’+ADβ†’)+(DBβ†’βˆ’BCβ†’)=Oβ†’CDβ†’+DCβ†’=Oβ†’CCβ†’=Oβ†’ \begin{align*} (\overrightarrow{AD}+\overrightarrow{BC})-(\overrightarrow{AC}+\overrightarrow{BD})=\overrightarrow{O}\\ \overrightarrow{AD}+\overrightarrow{BC}-\overrightarrow{AC}-\overrightarrow{BD}=\overrightarrow{O}\\ (\overrightarrow{AD}-\overrightarrow{AC})+(\overrightarrow{BC}-\overrightarrow{BD})=\overrightarrow{O}\\ (\overrightarrow{CA}+\overrightarrow{AD})+(\overrightarrow{DB}-\overrightarrow{BC})=\overrightarrow{O}\\ \overrightarrow{CD}+\overrightarrow{DC}=\overrightarrow{O}\\ \overrightarrow{CC}=\overrightarrow{O} \end{align*} Jadi, ADβ†’+BCβ†’=ACβ†’+BDβ†’ \overrightarrow{AD}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{BD} (Terbukti)

Example of geometric proof

In the trapezoid ABCD, the midpoints on sides AB, BC, CD, and DA are given, namely points P, Q, R, and S, as in the picture. Prove that PQRS is a parallelogram.

Alternative solutions
Look at the AC diagonal
PQ→=PB→+BQ→PQ→=12AB→+12BC→PQ→=12(AB→+BC→)PQ→=12AC→ \begin{align*} \overrightarrow{PQ}=\overrightarrow{PB}+\overrightarrow{BQ} \\ \overrightarrow{PQ}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BC} \\ \overrightarrow{PQ}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{BC}) \\ \overrightarrow{PQ}=\frac{1}{2}\overrightarrow{AC} \end{align*} SR→=SD→+DR→PQ→=12AD→+12DC→PQ→=12(AD→+DC→)SR→=12AC→ \begin{align*} \overrightarrow{SR}=\overrightarrow{SD}+\overrightarrow{DR} \\ \overrightarrow{PQ}=\frac{1}{2}\overrightarrow{AD}+\frac{1}{2}\overrightarrow{DC} \\ \overrightarrow{PQ}=\frac{1}{2}(\overrightarrow{AD}+\overrightarrow{DC}) \\ \overrightarrow{SR}=\frac{1}{2}\overrightarrow{AC} \end{align*} This means that PQ→=SR→\overrightarrow{PQ}=\overrightarrow{SR} and PQ→\overrightarrow{PQ} are parallel to SR→\overrightarrow{SR}
So, PQRS is a parallelogram.

Example of geometric proof of vectors

Prove that the diagonals of parallelogram OABC intersect each other in the middle

Alternative solutions
Look at the parallelogram OABC beside.
Geometric proof of vectors The position vectors of points A, B, and C are aβ€Ύ,bβ€Ύ, \overline{a},\overline{b}, and cβ€Ύ \overline{c} .
M midpoint ACβ†’ \overrightarrow{AC} , so that OMβ†’=OAβ†’+AMβ†’OMβ†’=OAβ†’+12ACβ†’OMβ†’=OAβ†’+12(OCβ†’βˆ’OAβ†’)OMβ†’=12(OAβ†’+OCβ†’)OMβ†’=12(aβ€Ύ+cβ€Ύ) \begin{align*} \overrightarrow{OM}&=\overrightarrow{OA}+\overrightarrow{AM} \\ \overrightarrow{OM}&=\overrightarrow{OA}+\frac{1}{2}\overrightarrow{AC} \\ \overrightarrow{OM}&=\overrightarrow{OA}+\frac{1}{2}(\overrightarrow{OC}-\overrightarrow{OA}) \\ \overrightarrow{OM}&=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OC}) \\ \overrightarrow{OM}&=\frac{1}{2}(\overline{a}+\overline{c}) \end{align*} The midpoint OBβ†’ \overrightarrow{OB} is determined by 12bβ€Ύ \frac{1}{2}\overline{b} , then 12bβ€Ύ=12(OAβ†’+ABβ†’)12bβ€Ύ=12(aβ€Ύ+OCβ†’)12bβ€Ύ=12(aβ€Ύ+OCβ†’)12bβ€Ύ=12(aβ€Ύ+cβ€Ύ) \begin{align*} \frac{1}{2}\overline{b}&=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{AB}) \\ \frac{1}{2}\overline{b}&=\frac{1}{2}(\overline{a}+\overrightarrow{OC}) \\ \frac{1}{2}\overline{b}&=\frac{1}{2}(\overline{a}+\overrightarrow{OC}) \\ \frac{1}{2}\overline{b}&=\frac{1}{2}(\overline{a}+\overline{c}) \end{align*} Thus, the midpoint ACβ†’ \overrightarrow{AC} is determined by 12(aβ€Ύ+cβ€Ύ) \frac{1}{2}(\overline{a}+\overline{c}) and the midpoint OBβ†’ \overrightarrow{OB} is determined by 12bβ€Ύ=12(aβ€Ύ+cβ€Ύ) \frac{1}{2}\overline{b}=\frac{1}{2}(\overline{a}+\overline{c}) . This shows that the diagonals OBβ†’ \overrightarrow{OB} and ACβ†’ \overrightarrow{AC} intersect each other in the middle

Practice Questions

  1. Draw the following vectors

    • vβ€Ύ=aβ€Ύ+bβ€Ύβˆ’cβ€Ύ \overline{v}=\overline{a}+\overline{b}-\overline{c}
    • wβ€Ύ=βˆ’23aβ€Ύ+bβ€Ύβˆ’3cβ€Ύ \overline{w}=-\frac{2}{3}\overline{a}+\overline{b}-3\overline{c}
  2. It is known that ABCDE is a regular pentagon
    Keep it simple

    • AEβ†’+ECβ†’+CDβ†’βˆ’ABβ†’ \overrightarrow{AE}+\overrightarrow{EC}+\overrightarrow{CD}-\overrightarrow{AB}
    • ABβ†’+BCβ†’βˆ’ECβ†’βˆ’DEβ†’ \overrightarrow{AB}+\overrightarrow{BC}-\overrightarrow{EC}-\overrightarrow{DE}
  3. If points A, B, and M have position vectors aβ€Ύ,bβ€Ύ \overline{a},\overline{b} and mβ€Ύ \overline{m} with respect to point O and point M is the midpoint of line segment AB, prove that mβ€Ύ=12(aβ€Ύ+bβ€Ύ) \overline{m}=\frac{1}{2}(\overline{a}+\overline{b})

  4. In the following picture, it can be seen that PQRS is a parallelogram. A and B are the midpoints of PQ and PS Jika RA→=u‾ \overrightarrow{RA}=\overline{u} dan RB→=v‾ \overrightarrow{RB}=\overline{v} , nyatakan:

    • PQβ†’ \overrightarrow{PQ} and RSβ†’ \overrightarrow{RS} in the form uβ€Ύ \overline{u} and vβ€Ύ \overline{v}
    • PQβ†’ \overrightarrow{PQ} and RSβ†’ \overrightarrow{RS} in the form uβ€Ύ \overline{u} and vβ€Ύ \overline{v}
  5. In βˆ†ABC, ABβ†’,BCβ†’ \overrightarrow{AB},\overrightarrow{BC} and CAβ†’ \overrightarrow{CA} represent the vectors aβ€Ύ,bβ€Ύ, \overline{a},\overline{b}, and cβ€Ύ \overline{ c} . P and Q are the midpoints of BC and CA. Suppose the line passing through Q is parallel to BC and intersects AB at R.

    • Prove that QRβ†’ \overrightarrow{QR} represents the Vector 12cβ€Ύ+kaβ€Ύ \frac{1}{2}\overline{c}+k\overline{a} for some k k
    • Prove that QRβ†’ \overrightarrow{QR} represents the Vector pbβ€Ύ p\overline{b} for some p p
    • By using aβ€Ύ+bβ€Ύ+cβ€Ύ=Oβ†’; \overline{a}+\overline{b}+\overline{c}=\overrightarrow{O}; prove that if (l+k)aβ€Ύ+(l+12)cβ€Ύ=Oβ†’, (l+k)\overline{a}+\left( l+\frac{1}{2} \right)\overline{c}=\overrightarrow{O}, then k=12 k=\frac {1}{2} and l=βˆ’12 l=-\frac{1}{2}