Geometric Interpretation of the position of two or more vectors, Comparison of Two Vectors and Collinearity

1. Inline (collinear) vectors

Points P, N, and Q are said to be collinear if the vector constructed by two points between them can be expressed as the vector product of the other two points. Thus, if the points P, N and Q lie on a straight line, N is said to divide the line segment PQ in the ratio k, if PNβ†’ =k NQβ†’\overrightarrow{PN}~=k\text{ }\overrightarrow{NQ}. vector Segaris

Definition of inline (collinear) points

Three points P, N, and Q are said to be collinear if and only if (⇔)(\Leftrightarrow )

where kk is a non-zero real number.

Example of Collinear Proof

The position vectors of P, Q, and R with respect to O are pβ€Ύ=3bβ€Ύ+5cβ€Ύβˆ’2aβ€Ύ\overline{p}=3\overline{b}+5\overline{c}-2\overline{a}, qβ€Ύ=aβ€Ύ+2bβ€Ύ+3cβ€Ύ\overline{q}=\overline{ a}+2\overline{b}+3\overline{c}, and rβ€Ύ=7aβ€Ύβˆ’c\overline{r}=7\overline{a}-c. Show that the three points are aligned
Alternative solutions OPβ†’=3bβ€Ύ+5cβ€Ύβˆ’2aβ€ΎOQβ†’=aβ€Ύ+2bβ€Ύ+3cβ€ΎORβ†’=7aβ€Ύβˆ’cβ€Ύ\begin{align*} \overrightarrow{OP}&=3\overline{b}+5\overline{c}-2\overline{a} \\\overrightarrow{OQ}&=\overline{a}+2\overline{b}+3\overline{c} \\\overrightarrow{OR}&=7\overline{a}-\overline{c} \end{align*} PQβ†’=OQβ†’βˆ’OPβ†’PQβ†’=(aβ€Ύ+2bβ€Ύ+3cβ€Ύ)βˆ’(3bβ€Ύ+5cβ€Ύβˆ’2aβ€Ύ)PQβ†’=3aβ€Ύβˆ’bβ€Ύβˆ’2cβ€Ύ\begin{align*} \overrightarrow{PQ}&=\overrightarrow{OQ}-\overrightarrow{OP} \\ \overrightarrow{PQ}&=(\overline{a}+2\overline{b}+3\overline{c})-(3\overline{b}+5\overline{c}-2\overline{a}) \\ \overrightarrow{PQ}&=3\overline{a}-\overline{b}-2\overline{c} \end{align*} PRβ†’=ORβ†’βˆ’OPβ†’PRβ†’=(7aβ€Ύβˆ’cβ€Ύ)βˆ’(3bβ€Ύ+5cβ€Ύβˆ’2aβ€Ύ)PRβ†’=3(3aβ€Ύβˆ’bβ€Ύβˆ’2cβ€Ύ)\begin{align*} \overrightarrow{PR}&=\overrightarrow{OR}-\overrightarrow{OP} \\ \overrightarrow{PR}&=(7\overline{a}-\overline{c})-(3\overline{b}+5\overline{c}-2\overline{a}) \\ \overrightarrow{PR}&=3(3\overline{a}-\overline{b}-2\overline{c}) \end{align*} It can be seen that PRβ†’=3PQβ†’\overrightarrow{PR}=3\overrightarrow{PQ} so that there is a number k=3k=3 that makes the three points line up. (Proven)

2. Comparison Formula

On the picture PN:NQ=m:nPN:NQ=m:n
maka PN→=mnNQ→\overrightarrow{PN}=\frac{m}{n}\overrightarrow{NQ}
until k=mnk=\frac{m}{n} Inline Vector From this comparison, point N can be expressed as a position vector n in the position vector of points P and Q. The method is as follows nβ€Ύ=pβ€Ύ+PNβ†’nβ€Ύ=pβ€Ύ+mm+nPQβ†’nβ€Ύ=pβ€Ύ+mm+n(qβ€Ύβˆ’pβ€Ύ)nβ€Ύ=mpβ€Ύ+npβ€Ύ+mqβ€Ύβˆ’mpβ€Ύm+nnβ€Ύ=mqβ€Ύ+npβ€Ύm+n∴nβ€Ύ=mqβ€Ύ+npβ€Ύm+n\begin{align*} \overline{n}&=\overline{p}+\overrightarrow{PN} \\ \overline{n}&=\overline{p}+\frac{m}{m+n}\overrightarrow{PQ} \\ \overline{n}&=\overline{p}+\frac{m}{m+n}(\overline{q}-\overline{p}) \\ \overline{n}&=\frac{m\overline{p}+n\overline{p}+m\overline{q}-m\overline{p}}{m+n} \\ \overline{n}&=\frac{m\overline{q}+n\overline{p}}{m+n}\\ \therefore \overline{n}=\frac{m\overline{q}+n\overline{p}}{m+n} \end{align*} If T is the midpoint of PQ and m=nm=n then the position vector tβ€Ύ\overline{t} is determined by: tβ€Ύ=12(aβ€Ύ+bβ€Ύ)\overline{t}=\frac{1}{2}(\overline{a}+\overline{b})

Example

Given βˆ†ABC with the position vectors of A, B, and C with respect to point O, namely aβ€Ύ=3pβ€Ύ+2qβ€Ύ,\overline{a}=3 \overline{p} +2\overline{q}, bβ€Ύ=βˆ’5pβ€Ύβˆ’3qβ€Ύ,\overline{b}=-5 \overline{p}-3\overline{q},and cβ€Ύ=4pβ€Ύβˆ’qβ€Ύ\overline{c}=4\overline{p}-\overline{q}. M is the midpoint of AB and point N is on AC such that ANβ†’=13ACβ†’.\overrightarrow{AN}=\frac{1}{3}\overrightarrow{AC}. Determine the position vectors of M and N in the form pβ€Ύ\overline{p} and qβ€Ύ \overline{q}.

Alternative solutions
M is the midpoint of AB, meaning: mβ€Ύ=OMβ†’mβ€Ύ=aβ€Ύ+bβ€Ύ2mβ€Ύ=3pβ€Ύ+2qβ€Ύβˆ’5pβ€Ύβˆ’3qβ€Ύ2mβ€Ύ=βˆ’2pβ€Ύβˆ’qβ€Ύ2∴mβ€Ύ=pβ€Ύβˆ’12qβ€Ύ\begin{align*} \overline{m}&=\overrightarrow{OM} \\ \overline{m}&=\frac{\overline{a}+\overline{b}}{2} \\ \overline{m}&=\frac{3\overline{p}+2\overline{q}-5\overline{p}-3\overline{q}}{2} \\ \overline{m}&=\frac{-2\overline{p}-\overline{q}}{2} \\ \therefore \overline{m}&=\overline{p}-\frac{1}{2}\overline{q} \end{align*}

AN→=13AC→\overrightarrow{AN}=\frac{1}{3}\overrightarrow{AC} means N divides AC in the ratio 1:2

∴ONβ†’=2OAβ†’+1OCβ†’1+2\therefore \overrightarrow{ON}=\frac{2\overrightarrow{OA}+1\overrightarrow{OC}}{1+2} nβ€Ύ=2(3pβ€Ύ+2qβ€Ύ)+4pβ€Ύβˆ’qβ€Ύ3nβ€Ύ=10pβ€Ύ+3qβ€Ύ3nβ€Ύ=103pβ€Ύ+qβ€Ύ\begin{align*} \overline{n}&=\frac{2(3\overline{p}+2\overline{q})+4\overline{p}-\overline{q}}{3} \\ \overline{n}&=\frac{10\overline{p}+3\overline{q}}{3} \\ \overline{n}&=\frac{10}{3}\overline{p}+\overline{q} \end{align*}

3. Understanding linear combinations and bases

If v1β€Ύ,v2β€Ύ,v3β€Ύ,…,vnβ€Ύ \overline{v_1},\overline{v_2},\overline{v_3},…,\overline{v_n} are Vectors in the space R2R^2. Then for each Vector vβ€ΎβˆˆR2\overline{v}\in R^2, the Vector vβ€Ύ\overline{v} can be expressed as a linear combination in v1β€Ύ,v2β€Ύ,v3β€Ύ,…,vnβ€Ύ\overline{v_1},\overline{v_2},\overline{v_3}, …,\overline{v_n} namely:

vβƒ—=k1vβƒ—1+k2vβƒ—2+k3vβƒ—3+…+knvβƒ—n\vec{v}=k_1\vec{v}_1+k_2\vec{v}_2+k_3\vec{v}_3+…+k_n\vec{v}_n dengan k1,k2,k3,…,knk_1,k_2,k_3, …,k_n adalah scalar-scalar real. If k1,k2,k3,…,knk_1,k_2,k_3,…,k_n tunggal, maka Vector-vector vβƒ—1,vβƒ—2,vβƒ—3,…,vβƒ—n\vec{v}_1,\vec{v}_2,\vec{v}_3,…,\vec{v }_n is called basis dalam ruang R2R^2

Look at the following image, showing two non-parallel and unidirectional vectors u‾\overline{u} and v‾.\overline{v}. base linear combination If OC→=q.v‾\overrightarrow{OC}=q.\overline{v} and OB→=p.u‾\overrightarrow{OB}=p.\overline{u} with pp and qq constant, based on the parallelogram rule we obtain: OA→=a‾=p.u‾+q.v‾\overrightarrow{OA}=\overline{a}=p.\overline{u}+q.\overline{v} This means that the vector a‾\overline{a} is formed from the linear combination p.u‾p.\overline{u} and q.v‾q.\overline{v} with u‾\overline{u} and v‾\overline{v} basis for Vector a‾.\overline{a}.

Example

From βˆ†OABβˆ†OAB it is known that C is in AB and D is in OB. T at the intersection of OC and AD. Comparison AC:CB = 2:1 and OD:DB = 1:3. Define OT:TC !

Alternative solutions
Because OAB and its components lie in a plane, it has dimensions of 2 (two). For this reason, every 2 vectors that are not in the same direction will be a basis for R. As a result, each vector can be expressed as a linear combination of the two bases singly.
Suppose the bases are OA and OB (vectors OA = a and OB = b), then ACβ†’=23ABβ†’ACβ†’=23(AOβ†’+OBβ†’)ACβ†’=23(βˆ’aβ€Ύ+bβ€Ύ)………(1)\begin{align*} \overrightarrow{AC}&=\frac{2}{3}\overrightarrow{AB} \\ \overrightarrow{AC}&=\frac{2}{3}(\overrightarrow{AO}+\overrightarrow{OB}) \\ \overrightarrow{AC}&=\frac{2}{3}(-\overline{a}+\overline{b})………(1) \end{align*}

ADβ†’=AOβ†’+ODβ†’ADβ†’=AOβ†’+14OBβ†’)ACβ†’=βˆ’aβ€Ύ+14b‾……….(2)\begin{align*} \overrightarrow{AD}&=\overrightarrow{AO}+\overrightarrow{OD} \\ \overrightarrow{AD}&=\overrightarrow{AO}+\frac{1}{4}\overrightarrow{OB}) \\ \overrightarrow{AC}&=-\overline{a}+\frac{1}{4}\overline{b}……….(2) \end{align*}

Karena OTβ†’\overrightarrow{OT} searah dengan OCβ†’\overrightarrow{OC} maka OTβ†’=Ξ»OCβ†’\overrightarrow{OT}=\lambda \overrightarrow{OC} , Ξ»\lambda suatu Scalar OTβ†’=Ξ»OCβ†’OTβ†’=Ξ»(OAβ†’+ACβ†’)OTβ†’=Ξ»(aβ€Ύ+23(βˆ’aβ€Ύ+bβ€Ύ)OTβ†’=13Ξ»aβ€Ύ+23Ξ»b‾………..(3)\begin{align*} \overrightarrow{OT}&=\lambda \overrightarrow{OC} \\ \overrightarrow{OT}&=\lambda (\overrightarrow{OA}+\overrightarrow{AC}) \\ \overrightarrow{OT}&=\lambda (\overline{a}+\frac{2}{3}(-\overline{a}+\overline{b}) \\ \overrightarrow{OT}&=\frac{1}{3}\lambda \overline{a}+\frac{2}{3}\lambda \overline{b}………..(3) \end{align*} On the other hand ATβ†’\overrightarrow{AT} is in the same direction as ADβ†’\overrightarrow{AD} so ATβ†’=ΞΌADβ†’\overrightarrow{AT}=\mu \overrightarrow{AD} , Ξ»\lambda is a Scalar OTβ†’=OAβ†’+ATβ†’OTβ†’=aβ€Ύ+ΞΌ(βˆ’aβ€Ύ+14bβ€Ύ)OTβ†’=(1βˆ’ΞΌ)aβ€Ύ+14ΞΌb‾…………..(4)\begin{align*} \overrightarrow{OT}&=\overrightarrow{OA}+\overrightarrow{AT} \\ \overrightarrow{OT}&=\overline{a}+\mu (-\overline{a}+\frac{1}{4}\overline{b}) \\ \overrightarrow{OT}&=(1-\mu )\overline{a}+\frac{1}{4}\mu \overline{b}…………..(4) \end{align*} By equating the coefficients aβ€Ύ\overline{a} and bβ€Ύ\overline{b} in (3) and (4), namely:
The coefficient aβ€Ύ\overline{a} obtains 1βˆ’ΞΌ=13Ξ»1-\mu =\frac{1}{3}\lambda
The coefficient bβ€Ύ\overline{b} is obtained 14ΞΌ=23Ξ»\frac{1}{4}\mu =\frac{2}{3}\lambda then ΞΌ=83Ξ»\mu =\frac{8}{3}\lambda
ΞΌ=83Ξ»\mu =\frac{8}{3}\lambda substituted into 1βˆ’ΞΌ=13Ξ»1-\mu =\frac{1}{3}\lambda is obtained 1βˆ’83Ξ»=13Ξ»1=93λλ=13\begin{align*} 1-\frac{8}{3}\lambda &=\frac{1}{3}\lambda \\ 1&=\frac{9}{3}\lambda \\ \lambda &=\frac{1}{3} \end{align*} Ξ»=13\lambda =\frac{1}{3} substituted into ΞΌ=83Ξ»\mu =\frac{8}{3}\lambda is obtained ΞΌ=83.13ΞΌ=89\begin{align*} \mu &=\frac{8}{3}.\frac{1}{3} \\ \mu &=\frac{8}{9} \end{align*} Karena OTβ†’=Ξ»OCβ†’\overrightarrow{OT}=\lambda \overrightarrow{OC}dan Ξ»=13\lambda =\frac{1}{3} maka OTβ†’=13OCβ†’\overrightarrow{OT}=\frac{1}{3}\overrightarrow{OC}

Selanjutnya karena OTβ†’=13OCβ†’\overrightarrow{OT}=\frac{1}{3}\overrightarrow{OC} maka ∣OTβ†’βˆ£=13∣OCβ†’βˆ£\left| \overrightarrow{OT} \right|=\frac{1}{3}\left| \overrightarrow{OC} \right|atau OTOC=13\frac{OT}{OC}=\frac{1}{3}
Terakhir karena OTOC=13\frac{OT}{OC}=\frac{1}{3} maka OTTC=1(3+1)=12\frac{OT}{TC}=\frac{1}{(3+1)}=\frac{1} {2} or OT:TC=1:2OT:TC=1:2
So, the OT:TC ratio is 1:2

Exercise 2

  1. Known ABC Point D on BC such that BD:DC = 2:1. Point E is in the middle of AB If Z is the point of intersection of AD and CE, determine AZ:ZD = … and CZ:ZE = …. question 1

  2. Given the rectangle ABCD, points M and N are located in the middle of AB and DC respectively. Points P and Q are respectively the intersection points of the diagonal AC with the line segments DM and BN. question 2 Prove that AP = PQ = QC = 13\frac{1}{3}AC.

  3. Theorems of Menelaus
    Given βˆ†ABC with a transversal (a line that intersects the sides of a triangle or its extension) PR. Question 3 Prove that ARRBΓ—BQQCΓ—CPPA=1\frac{AR}{RB}\times \frac{BQ}{QC}\times \frac{CP}{PA}=1

  4. Evidence of Something
    Triangle βˆ†ABC with AQ, BR, and CP intersects at point Z. Points P, Q, and R lie on line segments AB, BC, and CA, respectively. question 4 Prove that APPBΓ—BQQCΓ—CRRA=1\frac{AP}{PB}\times \frac{BQ}{QC}\times \frac{CR}{RA}=1