Learn about the dot product, a fundamental operation in linear algebra that calculates the scalar product of two vectors. Understand its geometric interpretation, properties, and applications in various fields, including physics, computer graphics, and machine learning.

In this article we will learn about operations on vectors, namely vector multiplication or dot product or dot product. After previously we learned operations on vectors, namely addition and subtraction on vectors↝ and multiplication of vectors with scalars↝ , so this time we will continue with the discussion of Vector Dot Multiplication (Dot Product). We can present vectors in algebraic form and geometric form where two vectors will form a certain angle. So, we can calculate the angle between the two vectors by applying the concept of Vector Dot Multiplication. Before continuing to master the material vector length↝ first.

Dot vector is also called scalar multiplication between two vectors, because even though the two elements being multiplied are vectors, the product is a scalar. The symbol for multiplication is a dot (.).

Definition:

Geometrically Dot Multiplication (dot product)

Example of Geometrically Dot Vector Multiplication:

Tentukan uβƒ—β‹…vβƒ—\vec{u}\cdot \vec{v} jika uβƒ—=(02)\vec{u}=\left( \begin{matrix} 0\\ 2\end{matrix} \right) dan vβƒ—=(44)\vec{v}=\left( \begin{matrix} 4\\ 4\end{matrix} \right)! If π‘Ž βƒ— and 𝑏 βƒ— are two vectors, then the scalar multiplication between π‘Ž βƒ— and 𝑏 βƒ— defined

Solution ✍️


Based on vector dot images and definitions, Alternative answer to question 1 uβƒ—=(02)\vec{u}=\left( \begin{matrix} 0\\ 2\\\end{matrix} \right), vβƒ—=(44)\vec{v}=\left( \begin{matrix} 4\\ 4\end{matrix} \right) dan tentu ΞΈ=45∘\theta =45{}^\circ . so uβƒ—β‹…vβƒ—=∣uβƒ—βˆ£βˆ£vβƒ—βˆ£cos⁑θ→Definisiuβƒ—β‹…vβƒ—=∣(02)∣∣(44)∣cos⁑45∘uβƒ—β‹…vβƒ—=02+22.42+42.122uβƒ—β‹…vβƒ—=2.42.122uβƒ—β‹…vβƒ—=8\begin{align*} \vec{u}\cdot \vec{v}&=\left| \vec{u} \right|\left| \vec{v} \right|\cos \theta \to \text{Definisi}\\ \vec{u}\cdot \vec{v}&=\left| \left( \begin{matrix}0\\ 2\end{matrix} \right) \right|\left| \left( \begin{matrix} 4\\ 4\end{matrix} \right) \right|\cos 45{}^\circ\\ \vec{u}\cdot \vec{v}&=\sqrt{{{0}^{2}}+2^2}.\sqrt{4^2+4^2}.\frac{1}{2}\sqrt{2}\\ \vec{u}\cdot \vec{v}&=2.4\sqrt{2}.\frac{1}{2}\sqrt{2}\\ \vec{u}\cdot \vec{v}&=8 \end{align*}

Theorem

Algebraically Dot Multiplication (dot product)

From the proposition above, it follows that multiplication directly involves the elements of the vector, namely:

Notes :

  • Geometrically, the direction of the two vectors is away from the angle formed.
  • The dot product of two vectors produces a scalar.

Properties of Scalar Multiplication (Dot Product) of Two Vectors:

  • aβƒ—β‹…bβƒ—=bβƒ—β‹…aβƒ—\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}
  • aβƒ—β‹…(bβƒ—+cβƒ—)=aβƒ—β‹…bβƒ—+aβƒ—β‹…cβƒ—\vec{a} \cdot (\vec{b}+\vec{c}) = \vec{a}\cdot\vec{b} + \vec{a}\cdot\vec{c}
  • aβƒ—β‹…aβƒ—=∣aβƒ—βˆ£2\vec{a}\cdot\vec{a}=|\vec{a}|^2
  • aβƒ—βŠ₯bβƒ—β‡’aβƒ—β‹…bβƒ—=0\vec{a}\perp\vec{b}\Rightarrow\vec{a}\cdot\vec{b}=0

Example of Vector Dot Multiplication Questions 1

Given the vectors aβƒ—=(βˆ’1,2,3) \vec{a} = (-1,2,3) , bβƒ—=(2,0,βˆ’2) \vec{b} = (2,0,-2) , and cβƒ—=(1,βˆ’3,4) \vec{c}= (1, -3, 4 ) . Determine the dot product of the following vectors:

  1. a⃗.b⃗ \vec{a}. \vec{b} given b⃗.c⃗ \vec{b}. \vec{c}
  2. aβƒ—(bβƒ—βˆ’cβƒ—) \vec{a}( \vec{b}- \vec{c})
  3. bβƒ—(aβƒ—βˆ’cβƒ—) \vec{b}( \vec{a}- \vec{c})
  4. (aβƒ—βˆ’bβƒ—).(bβƒ—+cβƒ—) ( \vec{a}- \vec{b}).( \vec{b}+ \vec{c})

Solution ✍️

  1. Determine aβƒ—.bβƒ— \vec{a}. \vec{b} given bβƒ—.\thingc \vec{b}. \thing{c} aβƒ—.bβƒ—=(βˆ’1,2,3).(2,0,βˆ’2)=βˆ’1.2+2.0+3.(βˆ’2)=βˆ’2+0βˆ’6=βˆ’8bβƒ—.cβƒ—=(2,0,βˆ’2).(1,βˆ’3,4)=2.1+0.(βˆ’3)+βˆ’2.4=2+0βˆ’8=βˆ’6\begin{align*} \vec{a}. \vec{b} &= (-1,2,3).(2,0,-2)\\&= -1.2 + 2.0 + 3.(-2)\\&= -2 + 0 - 6\\&= -8\\\vec{b}. \vec{c} &= (2,0,-2) . (1, -3, 4 )\\&=2.1 + 0. (-3) + -2.4\\&= 2 + 0 - 8\\&= - 6 \end{align*}
  2. Determine aβƒ—(bβƒ—βˆ’cβƒ—) \vec{a}( \vec{b}- \vec{c}) bβƒ—βˆ’cβƒ—=(2,0,βˆ’2)βˆ’(1,βˆ’3,4)=(2βˆ’1,0βˆ’(βˆ’3),βˆ’2βˆ’4)=(1,3,βˆ’6)aβƒ—(bβƒ—βˆ’cβƒ—)=(βˆ’1,2,3).(1,3,βˆ’6)=βˆ’1.1+2.3+3.(βˆ’6)=βˆ’1+6βˆ’18=βˆ’13\begin{align*} \vec{b}- \vec{c} &= (2,0,-2) - (1, -3, 4 )\\&= ( 2 - 1 , 0 - (-3) , -2 - 4 )\\&= (1 , 3, -6 )\\\vec{a}( \vec{b}- \vec{c}) &= (-1,2,3) . (1 , 3, -6 )\\&= -1.1 + 2. 3 + 3. (-6)\\&= -1 + 6 - 18\\&= -13 \end{align*}
  3. Determine bβƒ—(aβƒ—βˆ’cβƒ—) \vec{b}( \vec{a}- \vec{c}) aβƒ—βˆ’cβƒ—=(βˆ’1,2,3)βˆ’(1,βˆ’3,4)=(βˆ’2,5,βˆ’1) vecb(aβƒ—βˆ’cβƒ—)=(2,0,βˆ’2).(βˆ’2,5,βˆ’1)=2.(βˆ’2)+0.5+βˆ’2.(βˆ’1)=βˆ’4+0+2=βˆ’2\begin{align*} \vec{a}- \vec{c} &= (-1,2,3) - (1, -3, 4 )\\&= ( -2, 5, -1 )\\ \ vec{b}( \vec{a}- \vec{c}) &= (2,0,-2).( -2, 5, -1 )\\ &= 2.(-2) + 0.5 + -2. (-1) \\ &= -4 + 0 + 2 \\&= -2 \end{align*}
  4. Determine (aβƒ—βˆ’bβƒ—).(bβƒ—+cβƒ—) ( \vec{a}- \vec{b}).( \vec{b}+ \vec{c}) aβƒ—βˆ’bβƒ—=(βˆ’1,2,3)βˆ’(2,0,βˆ’2)=(βˆ’3,2,5)bβƒ—+cβƒ—=(2,0,βˆ’2)+(1,βˆ’3,4)=(3,βˆ’3,2)(aβƒ—βˆ’bβƒ—).(bβƒ—+cβƒ—)=(βˆ’3,2,5).(3,βˆ’3,2)=βˆ’9+βˆ’6+10=βˆ’5\begin{align*} \vec{a}-\vec{b} &= (-1,2,3) - (2,0,-2)\\&= ( -3, 2, 5 ) \\\vec {b}+ \vec{c} &= (2,0,-2) + (1, -3, 4 )\\&= (3, -3, 2)\\( \vec{ a}- \vec{b}).( \vec{b}+ \vec{c}) &= ( -3, 2, 5 ) . (3, -3, 2)\\&= -9 + -6 + 10\\&= -5 \end{align*}

Example of Vector Dot Multiplication Questions 2

If pβƒ— \vec{p} and qβƒ— \vec{q} form an angle 60∘ 60^\circ , with ∣pβƒ—βˆ£=6 |\vec{p}| = 6 , ∣qβƒ—βˆ£=5 |\vec{q}| = 5 , then determine the value pβƒ—.qβƒ— \vec{p}.\vec{q} !

Solution ✍️

pβƒ—.qβƒ—=∣pβƒ—βˆ£βˆ£qβƒ—βˆ£cos⁑θ=6.5.cos⁑60∘=30.12=15\begin{align*} \vec{p}.\vec{q} &= |\vec{p}||\vec{q} | \cos \theta \\&= 6 . 5. \cos 60^\circ\\&= 30. \frac{1}{2}\\&= 15 \end{align*}

Example of a vector dot multiplication question with the condition that there is a vector that is perpendicular

Given the vector aβƒ—=(k22),bβƒ—=(2βˆ’53)\vec{a} = \begin{pmatrix} k\\ 2\\ 2 \end{pmatrix},\vec{b} = \begin{pmatrix}2\\-5\\3\end{pmatrix} and cβƒ—=(21βˆ’1)\vec{c}= \begin{pmatrix}2\\1\\-1\end{pmatrix}. If vector aβƒ—\vec{a} is perpendicular to vector bβƒ—\vec{b}, then find the value of 2aβƒ—β‹…(bβƒ—βˆ’3cβƒ—)2\vec{a}\cdot (\vec{b}-3\vec{c})

Solution ✍️

aβƒ—βŠ₯bβƒ—β‡’aβƒ—β‹…bβƒ—=0⇔(k22)β‹…(2βˆ’53)=0⇔2kβˆ’10+6=0⇔2k+4=0⇔2k=4⇔k=2\begin{align*} \vec{a}\perp\vec{b}&\Rightarrow &\vec{a}\cdot\vec{b}&=0\\&\Leftrightarrow&\begin{pmatrix}k\\2\\2\end{pmatrix}\cdot\begin{pmatrix}2\\-5\\3\end{pmatrix}&=0\\&\Leftrightarrow&2k-10+6&=0\\&\Leftrightarrow&2k+4&=0\\ &\Leftrightarrow&2k&=4\\&\Leftrightarrow&k&=2 \end{align*} Thus obtained: aβƒ—=(222)\vec{a}=\begin{pmatrix}2\\2\\2\end{pmatrix}

By using the dot product property of two vectors, we obtain: aβƒ—βŠ₯bβƒ—=0aβƒ—β‹…cβƒ—=(222)β‹…(21βˆ’1)=(2β‹…2)+(2β‹…1)+(2β‹…βˆ’1)=4+2βˆ’2=42aβƒ—β‹…(bβƒ—βˆ’3cβƒ—)=2aβƒ—β‹…bβƒ—βˆ’2aβƒ—β‹…3cβƒ—=2(aβƒ—β‹…bβƒ—)βˆ’6(aβƒ—β‹…cβƒ—)=2(0)βˆ’6(4)=βˆ’24\vec{a}\perp\vec{b}=0\\\begin{align*} \vec{a}\cdot\vec{c}&=\begin{pmatrix}2\\2\\2\end{pmatrix}\cdot\begin{pmatrix}2\\1\\-1\end{pmatrix}\\&=(2\cdot2)+(2\cdot1)+(2\cdot{-1})\\&=4+2-2=4\end{align*}\\\begin{align*}2\vec{a}\cdot(\vec{b}-3\vec{c})&=2\vec{a}\cdot\vec{b}-2\vec{a}\cdot3\vec{c}\\&=2(\vec{a}\cdot\vec{b})-6(\vec{a}\cdot\vec{c})\\&=2(0)-6(4)=-24\end{align*} Jadi nilai 2aβƒ—β‹…(bβƒ—βˆ’3cβƒ—)=βˆ’242\vec{a}\cdot(\vec{b}-3\vec{c})=-24

Example of a Straight Vector Dot Multiplication Problem

Given the vectors pβƒ—=(m,2,6) \vec{p} = ( m, 2, 6 ) , qβƒ—=(βˆ’1,n,0) \vec{q} = (-1,n,0) and rβƒ—=(6k,3,7) \vec{r} = (6k,3,7 ) . If pβƒ—βŠ₯qβƒ— \vec{p} \bot \vec{q} and qβƒ—βŠ₯rβƒ— \vec{q} \bot \vec{r} , then determine the value of 16(n2+k2m2)+2012 16\left( \frac{n^2 + k^2} {m^2} \right) + 2012 !
Note: the symbol βŠ₯ \bot means perpendicular.

Solution ✍️

  • Determine the relationship m,n, m , n , and k k :
    • pβƒ— \vec{p} tegak lurus qβƒ— \vec{q} pβƒ—.qβƒ—=0β†’βˆ’m+2n+0=0β†’m=2n….(1) \vec{p}.\vec{q} = 0 \rightarrow -m + 2n + 0 = 0 \rightarrow m = 2n ….(1)
    • qβƒ— \vec{q} tegak lurus rβƒ— \vec{r} qβƒ—.rβƒ—=0β†’βˆ’6k+3n+0=0β†’k=n2….(2) \vec{q}.\vec{r} = 0 \rightarrow -6k + 3n + 0 = 0 \rightarrow k = \frac{n}{2} ….(2)
  • Determine the final result with press(1) and press(2): 16(n2+k2m2)+2012=16(n2+(n2)2(2n)2)+2012=16(n2+n244n2)+2012=16(n2+n244n2Γ—44)+2012=16(4n2+n216n2)+2012=16(5n216n2)+2012=16(516)+2012=5+2012=2017\begin{align*} 16\left( \frac{n^2 + k^2}{m^2} \right) + 2012 &= 16\left( \frac{n^2 + (\frac{n}{2})^2}{(2n)^2} \right) + 2012\\&= 16\left( \frac{n^2 + \frac{n^2}{4} }{4n^2} \right) + 2012\\&= 16\left( \frac{n^2 + \frac{n^2}{4} }{4n^2} \times \frac{4}{4} \right) + 2012\\&= 16\left( \frac{4n^2 + n^2}{16n^2} \right) + 2012\\&= 16\left( \frac{5n^2}{16n^2} \right) + 2012\\&= 16\left( \frac{5 }{16 } \right) + 2012\\&= 5 + 2012 = 2017 \end{align*} So, the value 16(n2+k2m2)+2012=2017 16\left( \frac{n^2 + k^2}{m^2} \right) + 2012 = 2017 .

Angle Between 2 Vectors

From the definition and proposition above, we can find the angle between two vectors.

Example:

Determine the magnitude of the angle formed by the vector u⃗=(62)\vec{u}=\left( \begin{matrix}6\\ 2 \end{matrix} \right) and v⃗=(34)\vec{v} = \begin{pmatrix}3\\4 \end{pmatrix} !

Solution ✍️

uβƒ—=(62)β†’u1=6,u2=2vβƒ—=(34)β†’v1=6,v2=2\begin{align*} & \vec{u}=\left( \begin{matrix}6\\2\end{matrix} \right)\to u_1=6,u_2=2\\ & \vec{v}=\left( \begin{matrix}3\\4\end{matrix} \right)\to v_1=6,v_2=2 \end{align*} cos⁑θ=uβƒ—β‹…vβƒ—βˆ£uβƒ—βˆ£βˆ£vβƒ—βˆ£cos⁑θ=u1v1+u2v2∣uβƒ—βˆ£βˆ£vβƒ—βˆ£cos⁑θ=6.3+2.462+22.32+42cos⁑θ=2640.15cos⁑θ=261010β‰ˆ2631,62β‰ˆ0,822ΞΈβ‰ˆarccos⁑(0,822)ΞΈβ‰ˆ34,71\begin{align*}& \cos \theta =\frac{\vec{u}\cdot \vec{v}}{\left| \vec{u} \right|\left| \vec{v} \right|}\\ & \cos \theta =\frac{u_1v_1+u_2v_2}{\left| \vec{u} \right|\left| \vec{v} \right|}\\ & \cos \theta =\frac{6.3+2.4}{\sqrt{6^2+2^2}.\sqrt{3^2+4^2}}\\ & \cos \theta =\frac{26}{\sqrt{40}.\sqrt{15}}\\ & \cos \theta =\frac{26}{10\sqrt{10}}\approx \frac{26}{31,62}\approx 0,822\\ & \theta \approx \arccos (0,822)\\ & \theta \approx 34,71 \end{align*} So, the angle formed by the vector uβƒ—\vec{u} and vβƒ—\vec{v} is 37,41∘37,41^\circ