This vector comparison is actually the same as the multiplication of a scalar with a vector which we studied in the article Geometric Interpretation of the Position of Two or More Vectors. This time we will study in more depth the coordinates of the dividing points.

In this article we will learn about Vector Comparison of Line Segments. This vector comparison is actually the same as scalar multiplication with vectors which we have studied in the article Geometric Interpretation of the Position of Two or More Vectors↝ . This time we will study in more depth the coordinates of the dividing points.

There are three things we will learn in the Vector Comparison material, namely being able to determine the division of a line segment using the ratio m:n, determining the division formula in vector form and determining the coordinates of the dividing points on line segments and vectors. Before studying this material, friends must first master previous vector material such as vector concepts↝ , vector operations↝ , geometric interpretation of vectors↝ .

1. Division of line segments in the ratio m:n

A point R divides the line segment ABAB in the ratio m:nm:n if AR:RB=m:nAR:RB=m:n. In the ratio AR:RB=m:nAR:RB=m:n there are two possible locations of point R on line segment AB, namely:

  1. Point R is located between points A and B (divides AB inside), divide AB in AR:RB=m:nAR:AB=m:(m+n)\begin{align*} & AR:RB=m:n \\&AR:AB=m:(m+n) \end{align*}

  2. Point R is located before or after points A and B (dividing AB outside). divide AB outside AR:RB=m:βˆ’nAR:AB=m:(mβˆ’n)\begin{align*} & AR:RB=m:-n \\&AR:AB=m:(m-n) \end{align*}

2. Division formula in Vector form

In the picture below, the ARB is in line (collinear). vector division AR:RB=m:n⇔ARRB=mn⇔nAR=mRB\begin{align*} & AR:RB=m:n \\ &\Leftrightarrow \frac{AR}{RB}=\frac{m}{n}\\ &\Leftrightarrow nAR=mRB \end{align*} For nAR=mRB⇔n(rβƒ—βˆ’aβƒ—)=m(bβƒ—βˆ’rβƒ—)⇔ nrβƒ—βˆ’naβƒ—=mbβƒ—βˆ’mr⃗⇔(m+n)rβƒ—=mbβƒ—+na⃗⇔ rβƒ—=mbβƒ—+naβƒ—m+n\begin{align*} & \text{}nAR=mRB \\ &\Leftrightarrow n(\vec{r}-\vec{a})=m(\vec{b}-\vec{r}) \\ &\Leftrightarrow \text{ }n\vec{r}-n\vec{a}=m\vec{b}-m\vec{r} \\ &\Leftrightarrow (m+n)\vec{r}= m\vec{b}+n\vec{a} \\ &\Leftrightarrow \text{ }\vec{r}=\frac{m\vec{b}+n\vec{a}}{m+ n} \end{align*}

3. Comparison formula in coordinate form

Previously we had formulated the division of line segments in vector form, namely: r⃗=mb⃗+na⃗m+n\vec{r}=\frac{m\vec{b}+n\vec{a}}{m+n} For

  1. If A(x1,y1)A(x_1,y_1) and B(x2,y2)B(x_2,y_2) are in R2{{R}^{2}}, then rβƒ—=m(x2y2)+n(x1y1)m+n\vec{r}=\frac{m\left( \begin{matrix}x_2 \\ y_2\\\end{matrix} \right)+n\left( \begin{matrix}x_1 \\ y_1\\\end{matrix} \right)}{ m+n} Koordinat titik R adalah R(mx2+nx1m+n, my2+ny1m+n)R\left( \frac{mx_2+nx_1}{m+n},\text{ }\frac{my_2+ny_1}{m+n} \right)
  2. If A(x1,y1,z1)A(x_1,y_1,{z_1}) and B(x2,y2,z2)B(x_2,y_2,{z_2}) in R2{{R}^{2}}, then rβƒ—=m(x2y2z2)+n(x1y1z1)m+n\vec{r}=\frac{m\left( \begin{matrix}x_2\\y_2\\z_2\\\end{matrix} \right)+n\left( \begin{matrix}x_1\\y_1\\z_1\end{matrix} \right)}{m+n} Koordinat titik R adalah R(mx2+nx1m+n, my2+ny1m+n, mz2+nz1m+n)R\left( \frac{mx_2+nx_1}{m+n},\text{ }\frac{my_2+ny_1}{m+n},\text{ }\frac{mz_2+nz_1}{m+n} \right)

Examples of Vector Comparison questions on Line Segments

Example 1

Determine the coordinates of the point P that divides the connecting line A(2,3,βˆ’1)A(2,3,-1) and B(βˆ’3,3,4)B(-3,3, 4) with the ratio 2:3 2 : 3 based on the determination:

  1. Point P divides AB inside,
  2. Point P divides AB outside and determine the position where point P is located.

Solution:

  1. Point P divides AB inside,
    • The comparison form is APβƒ—:PBβƒ—=2:3\vec{AP} : \vec{PB} = 2 : 3
    • Determine the position vector of point P: pβƒ—=2bβƒ—+3aβƒ—2+3=15(2bβƒ—+3aβƒ—)=15(2(βˆ’3,3,4)+3(2,3,βˆ’1))=15((βˆ’6,6,8)+(6,9,βˆ’3))=15(0,15,5)=(0,3,1)\begin{align*} \vec{p} &= \frac{2\vec{b} + 3\vec{a}}{2+3} \\ &= \frac{1}{5 } (2\vec{b} + 3\vec{a}) \\ &= \frac{1}{5} (2(-3,3, 4) + 3(2,3,-1) ) \\ &= \frac{1}{5} ((-6,6, 8) + (6,9,-3)) \\ &= \frac{1}{5}(0 ,15, 5)\\ &=(0,3, 1) \end{align*} We obtain the position vector of point P, namely pβƒ—=(0,3,1) \vec{p} =(0,3, 1) so that the coordinates point P is(0,3, 1).
  2. Point P divides AB outside and determine the position where point P is located.
    • The vector ratio m:n=2:3 m : n =2 : 3 means m:n m : n so that point P lies before line AB.
    • The comparison form is PAβƒ—:PBβƒ—=2:3\vec{PA} : \vec{PB} = 2 : 3 or APβƒ—:PBβƒ—=βˆ’2:3\vec{AP} : \vec{PB} = -2 : 3
    • Determine the position vector of point P: pβƒ—=βˆ’2bβƒ—+3aβƒ—βˆ’2+3=βˆ’2bβƒ—+3 veca1=βˆ’2bβƒ—+3aβƒ—=βˆ’2(βˆ’3,3,4)+3(2,3,βˆ’1)=(6,βˆ’6,βˆ’8)+(6,9,βˆ’3)=(12,3,βˆ’11)\begin{align*} \vec{p} &= \frac{-2\vec{b} + 3\vec{a}}{-2+3} \\&= \frac{-2\vec{b} + 3\ vec{a}}{1} \\&= -2\vec{b} + 3\vec{a} \\&=-2(-3,3, 4) + 3(2,3 ,-1)\\&=(6,-6, -8) + (6,9,-3) \\&=(12,3, -11) \end{align*} We obtain the position vector of point P, namely pβƒ—=(12,3,βˆ’11) \vec{p} =(12,3, -11) so that the coordinates of point P are (12,3,βˆ’11) (12,3, -11) which is located before points A and B.

Example 2

Determine the coordinates of point C which divides the line P(2,βˆ’3,3)P(2,-3,3) and Q(2,4,3)Q(2,4,3) in the ratio 5:25 : 2 based on the determination:

  1. Point C divides PQ inside,
  2. Point C divides PQ outside and determine the position where point C is located.

Solution:

  1. Point C divides PQ inside,
    • The comparison form is PCβƒ—:CQβƒ—=5:2\vec{PC} : \vec{CQ} = 5 : 2
    • Determine the position vector of point C: cβƒ—=5qβƒ—+2pβƒ—5+2=17(5qβƒ—+2pβƒ—)=17(5(2,4,3)+2(2,βˆ’3,3))=17((10,20,15)+(4,βˆ’6,6))=17(14,14,21)=(2,2,3)\begin{align*} \vec{c} &= \frac{5\vec{q} + 2\vec{p}}{5 + 2} \\ &= \frac{1}{7} (5\vec{q} + 2\vec{p}) \\&= \frac{1}{7} (5(2,4, 3) + 2(2,-3,3)) \\ &= \frac {1}{7} ((10,20, 15) + (4,-6,6)) \\ &= \frac{1}{7}(14,14, 21)\\& =(2 , 2, 3) \end{align*} We obtain the position vector of point C, namely cβƒ—=(2,2,3) \vec{c} =(2 , 2, 3) so the coordinates of point C are (2 , 2, 3).
  2. Point C divides PQ outside and determine the position where point C is located.
    • The vector ratio is m:n=5:2 m : n =5 : 2 meaning m>n m > n so that point C lies after line PQ.
    • The comparison form is PCβƒ—:QCβƒ—=5:2\vec{PC} : \vec{QC} = 5 : 2 or PCβƒ—:CQβƒ—=5:βˆ’2\vec{PC} : \vec{CQ} = 5 : -2
    • Determine the position vector of point C: cβƒ—=5qβƒ—βˆ’2pβƒ—5βˆ’2=13(5qβƒ—βˆ’2pβƒ—)=13(5(2,4,3)βˆ’2(2,βˆ’3,3))=13((10,20,15)βˆ’(4,βˆ’6,6))=13(6,26,9)=(2,263,3)\begin{align*} \vec{c} &= \frac{5\vec{q} - 2\vec{p}}{5 - 2} \\ &= \frac{1}{3} (5\vec{q} - 2\vec{p}) \\ &= \frac{1}{3} (5(2,4, 3) - 2(2,-3,3)) \\ &= \frac{1}{3} ((10,20, 15) - (4,-6,6)) \\ &= \frac{1}{3}(6,26,9)\\ &=\left(2,\frac{26}{3}, 3 \right) \end{align*} We obtain the position vector of point C, namely cβƒ—=(2,263,3) \vec{c} =\left(2,\frac{26}{3}, 3 \right) so that the coordinates of point C are (2,263,3) \left(2,\frac{26}{3}, 3 \right) which is located after points P and Q.

Example 3

Determine the coordinates of the point P which lies outside AB with A(βˆ’3,2,1) A(-3, 2 , 1 ) , B(1,βˆ’2,4) B( 1, -2, 4) APβƒ—:PBβƒ—=3:(βˆ’2) \vec{AP} : \vec{PB} = 3 : (-2) and determine the location of point P!

Solution:

  • In the comparison APβƒ—:PBβƒ—=3:(βˆ’2) \vec{AP} : \vec{PB} = 3 : (-2) , the twin point (point P) is already in the middle so we don’t need to reverse the direction of the vector. To do this directly, we use β€œnear-near-far-far”.
  • Determine the position vector of point P: pβƒ—=3bβƒ—βˆ’2aβƒ—3βˆ’2=3bβƒ—βˆ’2aβƒ—1=3bβƒ—βˆ’2aβƒ—=3(1,βˆ’2,4)βˆ’2(βˆ’3,2,1) =(3,βˆ’6,12)βˆ’(βˆ’6,4,2)=(9,βˆ’10,10)\begin{align*} \vec{p} &= \frac{3\vec{b} - 2\vec{a}}{3 - 2} \\ &= \frac{3\vec{b} - 2\vec{a }}{1} \\ &=3\vec{b} - 2\vec{a} \\ &=3( 1, -2, 4) - 2(-3, 2 , 1 ) \ \\ &=( 3, -6, 12) - (-6, 4 , 2 ) \\ &=( 9, -10, 10) \end{align*} We obtain the position vector of point P, namely pβƒ—=(9,βˆ’10,10) \vec{p} =( 9, -10, 10)
    so that the coordinates of point P are (9,βˆ’10,10) (9, -10, 10) .
  • Determine whether the location of point P is before or after AB: Pay attention to the vector ratio, namely 3:βˆ’2 3 : -2 , if we absolute it then we get the ratio to be 3:2 3 : 2 , meaning m:n=3:2 m : n = 3 : 2 which satisfies m:n m : n so that point P lies after the line segment AB.

Example 4

If a⃗ \vec{a} , b⃗ \vec{b} and c⃗ \vec{c} are the position vectors of points A, B, and C of ΔABC \Delta ABC . Point D is on AC⃗ \vec{AC} so that AD:DC=1:3 AD : DC = 1 : 3 . Point E is on BC⃗ \vec{BC} so that BE:EC=5:2 BE : EC = 5 : 2 . Express DE⃗ \vec{DE} in a⃗ \vec{a} , b⃗ \vec{b} , and c⃗ \vec{c} !

Solution:

  • Look at the following picture illustration:
    example solution 4
  • Determine the position vector D with the vector ratio AD:DC=1:3 AD : DC = 1 : 3 dβƒ—=1.cβƒ—+3aβƒ—1+3=cβƒ—+3aβƒ—4\begin{align*} \vec{d} &= \frac{1.\vec{c} + 3\vec{a} }{1 + 3}\\ &= \frac{\vec{c} + 3\vec{a } }{4} \end{align*}
  • Determine the position vector E with the vector ratio BE:EC=5:2 BE : EC = 5 : 2 eβƒ—=5cβƒ—+2bβƒ—5+2=5cβƒ—+2bβƒ—7\begin{align*} \vec{e} &= \frac{5\vec{c} + 2\vec{b} }{5 + 2}\\ &= \frac{5\vec{c} + 2\vec{b } }{7} \end{align*}
  • Determining the vector DEβƒ— \vec{DE} : DEβƒ—=eβƒ—βˆ’dβƒ—=5cβƒ—+2bβƒ—7βˆ’cβƒ—+3aβƒ—4=4(5cβƒ—+2bβƒ—)28βˆ’7( vecc+3aβƒ—)28=20cβƒ—+8bβƒ—28βˆ’7cβƒ—+21aβƒ—28=20cβƒ—+8bβƒ—βˆ’7cβƒ—βˆ’21aβƒ—28=βˆ’21aβƒ—+28bβƒ—βˆ’7cβƒ—28=128(βˆ’21aβƒ—+28bβƒ—βˆ’7cβƒ—)\begin{align*} \vec{DE} &= \vec{e} - \vec{d}\\&= \frac{5\vec{c} + 2\vec{b} }{7} - \frac{\vec {c} + 3\vec{a} }{4} \\&= \frac{4(5\vec{c} + 2\vec{b}) }{28} - \frac{7(\ vec{c} + 3\vec{a} )}{28} \\&= \frac{20\vec{c} + 8\vec{b} }{28} - \frac{7\vec{ c} + 21\vec{a}}{28} \\&= \frac{20\vec{c} + 8\vec{b} - 7\vec{c} - 21\vec{a} } {28}\\&= \frac{- 21\vec{a} + 28\vec{b} - 7\vec{c} }{28}\\&= \frac{1}{28 } ( - 21\vec{a} + 28\vec{b} - 7\vec{c}) \end{align*} Yes, the result is DEβƒ—=128(βˆ’21aβƒ—+28bβƒ—βˆ’7cβƒ—) \vec{DE} = \frac{1}{28} (- 21\vec{a} + 28\vec{b} - 7\vec{c}).

Example 5

From triangle ABC, it is known that points D are on AC and E are on AB. Point G at the intersection of DB and EC. If the comparison is known AD:DC=3:1 AD : DC = 3 : 1 and AE:EB=1:2 AE : EB = 1 : 2 , then determine the ratio of EG:GC EG : GC and DG:GB DG : GB !

Solution:

  • Look at the following picture illustration example solution 4 In the picture we series the line segment AG. To determine the required line ratio, we will work using the concept of vector comparison.
  • With the concept of collinear points, we get:
    Let AB⃗=q⃗ \vec{AB} = \vec{q} and AC⃗=p⃗ \vec{AC} = \vec{p} .
    AE⃗=13AB⃗=13q⃗ \vec{AE} = \frac{1}{3}\vec{AB} = \frac{1}{3}\vec{q} given AD⃗=34AC⃗=34p⃗ \vec{AD} = \frac{3}{4 }\vec{AC} = \frac{3}{4}\vec{p} .
    • The vector EGβƒ—\vec{EG} is in line with ECβƒ— \vec{EC} until multiplication occurs:
      EGβƒ—=nECβƒ—β†’EGβƒ—ECβƒ—=n1 \vec{EG} = n\vec{EC} \rightarrow \frac{\vec{EG}}{\vec{EC}} = \frac{n}{1} sehingga EGβƒ—GCβƒ—=n1βˆ’n \frac{\vec{EG }}{\vec{GC}} = \frac{n}{1-n}
    • The vector DGβƒ—\vec{DG} is in line with DBβƒ— \vec{DB} until multiplication occurs:
      DGβƒ—=mDBβƒ—β†’DGβƒ—DBβƒ—=m1 \vec{DG} = m\vec{DB} \rightarrow \frac{\vec{DG}}{\vec{DB}} = \frac{m}{1} sehinga GGβƒ—GBβƒ—=m1βˆ’m \frac{\vec{GG }}{\vec{GB}} = \frac{m}{1-m}
  • Menentukan vector AGβƒ— \vec{AG} dari EGβƒ—:GCβƒ—=n:1βˆ’n \vec{EG}:\vec{GC} = n : 1-n AGβƒ—=nACβƒ—+(1βˆ’n)AEβƒ—n+(1βˆ’n)=npβƒ—+(1βˆ’n).13qβƒ—1=npβƒ—+1βˆ’n3qβƒ— \vec{AG} = \frac{n\vec{AC} + (1-n)\vec{AE}}{n + (1-n)} = \frac{n\vec{p} + (1 -n).\frac{1}{3}\vec{q}}{1} = n\vec{p} + \frac{1-n}{3}\vec{q} .
  • Menentukan vector AGβƒ— \vec{AG} dari DGβƒ—:GBβƒ—=m:1βˆ’m \vec{DG}:\vec{GB} = m : 1-m AGβƒ—=mABβƒ—+(1βˆ’m)ADβƒ—m+(1βˆ’m)=mqβƒ—+(1βˆ’m).34pβƒ—1=mqβƒ—+3(1βˆ’m)4pβƒ— \vec{AG} = \frac{m\vec{AB} + (1-m)\vec{AD}}{m + (1-m)} = \frac{m\vec{q} + (1 -m).\frac{3}{4}\vec{p}}{1} = m\vec{q} + \frac{3(1-m)}{4}\vec{p} .
  • The vector AGβƒ— \vec{AG} of the two forms above is the same so that by equating the coefficients of similar vectors, we get the equation:
    • Vector coefficients pβƒ— \vec{p} : n=3(1βˆ’m)4β†’4n=3βˆ’3mβ†’4n+3m=3….(1) n = \frac{3(1-m)}{4} \rightarrow 4n = 3 - 3m \rightarrow 4n + 3m = 3….(1)
    • Vector coefficients qβƒ— \vec{q} : 1βˆ’n3=mβ†’1βˆ’n=3mβ†’n+3m=1….(2) \frac{1-n}{3} = m \rightarrow 1 - n = 3m \rightarrow n + 3m = 1….(2)
    • Elimination of press(1) and press(2): 4n+3m=3n+3m=1βˆ’3n=2n=23 \begin{array}{cc}4n + 3m = 3 &\\ n + 3m = 1 & -\\\hline 3n = 2 &\\ n = \frac{2}{3 } \end{array} Pers(2): n+3m=1β†’23+3m=1β†’m=19 n + 3m = 1 \rightarrow \frac{2}{3} + 3m = 1 \rightarrow m = \frac{1}{9} .
  • Determine the requested comparison:
    • Perbandingan EGβƒ—:GCβƒ—\vec{EG}:\vec{GC} EGβƒ—:GCβƒ—=n:1βˆ’n=23:1βˆ’23=23:13=2:1\vec{EG}:\vec{GC} = n : 1-n = \frac{2}{3} : 1 - \frac{2}{3} = \frac{2}{3} : \frac{1}{3} = 2 : 1
    • Perbandingan DGβƒ—:GBβƒ— \vec{DG}:\vec{GB} : DGβƒ—:GBβƒ—=m:1βˆ’m=19:1βˆ’19=19: frac89=1:8 \vec{DG}:\vec{GB} = m : 1-m= \frac{1}{9} : 1 - \frac{1}{9} = \frac{1}{9} : \ frac{8}{9} = 1 : 8

So, we get the ratio EG:GC=2:1 EG : GC = 2 : 1 and DG:GB=1:8 DG : GB = 1 : 8 .

Notes : For a more effective way to work on example question number 5, we can use Menelaus' theorem. The method is:

  • Determine the comparison EG:GC EG : GC : EGGC.CDDA.ABEB=1EGGC.13.32=1EGGC.12=1EGGC=1:12EGGC=21\begin{align*} \frac{EG}{GC}.\frac{CD}{DA}.\frac{AB}{EB} &= 1\\\frac{EG}{GC}.\frac{1}{3}.\frac{3}{2} &= 1\\\frac{EG}{GC}.\frac{1}{2} &= 1\\\frac{EG}{GC}&= 1 : \frac{1}{2} \\\frac{EG}{GC}&= \frac{2}{1} \end{align*}
  • Determine the ratio DG:GB DG : GB : DGGB.BEEA.ACCD=1DGGB.21.41=1DGGB.81=1DGGB=1:81DGGB=18\begin{align*} \frac{DG}{GB}.\frac{BE}{EA}.\frac{AC}{CD} &= 1\\\frac{DG}{GB}.\frac{2}{1}.\frac{4}{1} &= 1\\\frac{DG}{GB}.\frac{8}{1}&= 1\\\frac{DG}{GB} &= 1 : \frac{8}{1}\\\frac{DG}{GB} &= \frac{1}{8} \end{align*}

How is the result? Yup, it’s the same as using Menelaus' theorem.

Exercise 5

  1. Given the points P(1, 7) and Q(4, 1). Point R is a point on the line PQ, such that PR→=13PQ→\overset{\to }{\mathop{PR}}=\frac{1}{3}\overset{\to }{\mathop{PQ}}. Determine the coordinates of point R.