Learn how to calculate the area of a triangle using trigonometry rules, including sine formulas and Heron's formula. Perfect for high school math students.

The area of ​​a triangle that we previously understood was calculated using the formula base area times height divided by two or can be written Lβ–³=12Γ—aΓ—t L\triangle=\frac12\times a \times t

Apart from using the formula above, the area of ​​the triangle can also be obtained using trigonometry formulas. But first, please study Trigonometric Comparisons in Right Triangles↝ , Special Angle Trigonometric Comparisons↝ , and also [Sine Rule and Cosine](/sine-and-cosine-trigonometry rules) to understand more about trigonometry.

Area of ​​a Triangle with Trigonometry Rules

1. Area of ​​a Triangle if two sides and one angle are known

Look at the following triangle ABC with its angles and sides!

Area of ​​a Triangle

The area of ​​triangle ABC is: Lβ–³ABC=12Γ—alasΓ—tinggi=12Γ—cΓ—t\begin{align} L \triangle ABC &= \frac12 \times \text{alas} \times \text{tinggi}\nonumber\\ &= \frac12 \times c \times t \end{align} Note that the triangle ADC, with trigonometric ratios is obtained sin⁑α=tb\sin\alpha=\frac{t}{b} atau t=bsin⁑α\begin{align}t=b\sin\alpha\end{align} From press (1) and press (2), then Lβ–³ABC=12Γ—cΓ—t=12Γ—cΓ—bsin⁑αLβ–³ABC=12bcsin⁑α\begin{align}L \triangle ABC &= \frac12\times c \times t\nonumber\\ &= \frac12 \times c \times b \sin\alpha \nonumber\\ L \triangle ABC &= \frac{1}{2}bc\sin\alpha \end{align} In the same way, for each triangle ABC also applies:

Lβ–³ABC=12bcsin⁑αLβ–³ABC=12acsin⁑βLβ–³ABC=12absin⁑γ\begin{align*} L \triangle ABC &= \frac{1}{2}bc\sin\alpha \\ L \triangle ABC &= \frac{1}{2}ac\sin\beta \\ L \triangle ABC &= \frac{1}{2}ab\sin\gamma \end{align*}

Problems example

Determine the area of ​​triangle ABC if side BC=4BC=4 cm, AC=73AC=7\sqrt3 cm and ∠C=60Β°\angle C=60\degree.

Solution ✍️

BC=4BC=4 cm, AC=73AC=7\sqrt3 cm dan ∠C=60°\angle C=60\degree Trigonometry Triangle Area Questions

By using the triangle area formula, trigonometry rules Lβ–³ABC=12BC.AC.sin⁑C=12(4)(73)sin⁑60Β°=12(4)(73)123=14(4)(73)(3)=(7)(3)=21\begin{align*}L \triangle ABC &= \frac{1}{2}BC.AC.\sin C \\ &= \frac{1}{2}(4)(7\sqrt3)\sin 60\degree \\ &= \frac{1}{2}(4)(7\sqrt3)\frac12\sqrt3 \\ &= \frac{1}{4}(4)(7\sqrt3)(\sqrt3) \\ &= (7)(3) \\&= 21 \end{align*} So, the area of ​​triangle ABC is 21 cm221 \text{ cm}^2.

2. Area of ​​a Triangle if all three sides are known

Proof of Heron’s formula

  • In triangle ABC the Cosine rule for angle A applies a2=b2+c2βˆ’2bccos⁑Aβ†’cos⁑A=b2+c2βˆ’a22bc\begin{align*}a^2 = b^2 + c^2 - 2bc \cos A \\ \rightarrow \cos A = \frac{b^2 + c^2 - a^2 }{2bc}\tag{1} \end{align*}
  • Identitas Trigonometri: sin⁑2A+cos⁑2A=1β†’sin⁑2A=1βˆ’cos⁑2Aβ†’sin⁑2A=(1βˆ’cos⁑A)(1+cos⁑A)(2) \sin ^2 A + \cos ^2 A = 1 \\ \rightarrow \sin ^2 A = 1 - \cos ^2 A \\ \rightarrow \sin ^2 A = (1-\cos A)(1+\cos A) \tag{2}
  • Substitute press (1) into press (2)

sin⁑2A=1βˆ’cos⁑2Asin⁑2A=(1βˆ’cos⁑A)(1+cos⁑A)=(1βˆ’b2+c2βˆ’a22bc)(1+b2+c2βˆ’a22bc)=(2bcβˆ’b2βˆ’c2+a22bc)(2bc+b2+c2βˆ’a22bc)=(βˆ’(bβˆ’c)2+a22bc)((b+c)2βˆ’a22bc)=(a2βˆ’(bβˆ’c)22bc)((b+c)2βˆ’a22bc)=((aβˆ’b+c)(a+bβˆ’c)2bc)((b+cβˆ’a)(b+c+a)2bc)sin⁑2A=(aβˆ’b+c)(a+bβˆ’c)(b+cβˆ’a)(b+c+a)(2bc)(2bc)sin⁑A=(aβˆ’b+c)(a+bβˆ’c)(b+cβˆ’a)(b+c+a)(2bc)(2bc)sin⁑A=12bc(aβˆ’b+c)(a+bβˆ’c)(b+cβˆ’a)(b+c+a) \begin{align*}\sin ^2 A &= 1 - \cos ^2 A \\\sin ^2 A &= (1 - \cos A )(1 + \cos A )\\ &= \left(1 - \frac{b^2 + c^2 - a^2 }{2bc} \right) \left(1 + \frac{b^2 + c^2 - a^2 }{2bc} \right)\\ &= \left( \frac{2bc - b^2 - c^2 + a^2 }{2bc} \right) \left( \frac{2bc + b^2 + c^2 - a^2 }{2bc} \right)\\ &= \left( \frac{-(b-c)^2 + a^2 }{2bc} \right) \left( \frac{(b+c)^2- a^2}{2bc} \right)\\ &= \left( \frac{ a^2 -(b-c)^2 }{2bc} \right) \left( \frac{(b+c)^2- a^2 }{2bc} \right)\\ &= \left( \frac{ (a-b+c)(a+b-c) }{2bc} \right) \left( \frac{(b+c-a)(b+c+a) }{2bc} \right)\\ \sin ^2 A &= \frac{ (a-b+c)(a+b-c)(b+c-a)(b+c+a) }{(2bc)(2bc)} \\ \sin A &= \sqrt{ \frac{ (a-b+c)(a+b-c)(b+c-a)(b+c+a) }{(2bc)(2bc)} } \\ \sin A &= \frac{1}{2bc}\sqrt{ (a-b+c)(a+b-c)(b+c-a)(b+c+a) } \end{align*}

  • for example : s=12(a+b+c) s = \frac{1}{2}(a+b+c) therefore

    • 2s=a+b+c2s=a+b+c
    • b+cβˆ’a=(a+b+c)βˆ’2a=2sβˆ’2a=2(sβˆ’a)b+c-a=(a+b+c)-2a=2s-2a=2(s-a)
    • a+cβˆ’b=(a+b+c)βˆ’2b=2sβˆ’2b=2(sβˆ’b)a+c-b=(a+b+c)-2b=2s-2b=2(s-b)
    • a+bβˆ’c=(a+b+c)βˆ’2c=2sβˆ’2c=2(sβˆ’c)a+b-c=(a+b+c)-2c=2s-2c=2(s-c)

    until obtained sin⁑A=12bc(aβˆ’b+c)(a+bβˆ’c)(b+cβˆ’a)(b+c+a)=12bc2sβ‹…2(sβˆ’a)β‹…2(sβˆ’b)β‹…2(sβˆ’c)A=12bc16s(sβˆ’a)(sβˆ’b)(sβˆ’c)A=42bcs(sβˆ’a)(sβˆ’b)(sβˆ’c)sin⁑A=2bcs(sβˆ’a)(sβˆ’b)(sβˆ’c)\begin{align*} \sin A &= \frac{1}{2bc}\sqrt{ (a-b+c)(a+b-c)(b+c-a)(b+c+a) }\\ &= \frac{1}{2bc}\sqrt{ 2s\cdot2(s-a)\cdot2(s-b)\cdot2(s-c) }\\ A &= \frac{1}{2bc}\sqrt{ 16s(s-a)(s-b)(s-c) }\\ A &= \frac{4}{2bc}\sqrt{ s(s-a)(s-b)(s-c) }\\ \sin A &= \frac{2}{bc}\sqrt{ s(s-a)(s-b)(s-c) } \end{align*}

  • Area of ​​triangle ABC using angle A: L=12.AB.AC.sin⁑A=12.c.b.2bcs(sβˆ’a)(sβˆ’b)(sβˆ’c)=s(sβˆ’a)(sβˆ’b)(sβˆ’c) \begin{align*}L &= \frac{1}{2}.AB.AC. \sin A\\ &= \frac{1}{2}.c.b. \frac{2}{bc}\sqrt{ s (s-a)(s-b)(s-c) }\\ &= \sqrt{ s (s-a)(s-b)(s-c) } \end{align*} So, the area of ​​the triangle is proven.

Problems example

Determine the area of ​​triangle ABC if it is known that the sides a=13a=13 cm, b=14b=14 cm and c=15c=15 cm.

Solution ✍️

a=13a=13 cm, b=14b=14 cm dan c=15c=15 cm.

s=12(a+b+c)=12(13+14+15)=21\begin{align*}s&=\frac12(a+b+c)\\ &=\frac12(13+14+15) \\ &= 21 \end{align*} Use the triangle area formula if the number of sides is known Lβ–³ABC=s(sβˆ’a)(sβˆ’b)(sβˆ’c)=21(21βˆ’13)(21βˆ’14)(21βˆ’15)=21(8)(7)(6)=7056=84 \begin{align*}L\triangle ABC &= \sqrt{ s (s-a)(s-b)(s-c) } \\ &= \sqrt{ 21 (21-13)(21-14)(21-15) } \\ &= \sqrt{ 21 (8)(7)(6) } \\ &= \sqrt{ 7056 } \\ &= 84 \end{align*}

So, the area of ​​triangle ABC is 84 cm284 \text{ cm}^2.

3. Summary of Triangle Area Formulas

Formula TypeFormulaWhen to Use
Basic Area FormulaL=12Γ—baseΓ—heightL = \frac{1}{2} \times \text{base} \times \text{height}When height is known
Sine Rule for AreaL=12Γ—aΓ—bΓ—sin⁑(C)L = \frac{1}{2} \times a \times b \times \sin(C)When two sides and the included angle are known
Heron’s FormulaL=s(sβˆ’a)(sβˆ’b)(sβˆ’c)L = \sqrt{s(s-a)(s-b)(s-c)}When all three sides are known

Real-Life Applications

  1. Architecture: Calculating the area of triangular sections in buildings.
  2. Surveying: Measuring land areas with irregular shapes.
  3. Physics: Determining forces acting on triangular components.

Practice Problems

  1. Calculate the area of a triangle with a=8a = 8 cm, b=10b = 10 cm, and ∠C=45∘\angle C = 45^\circ.
  2. Use Heron’s formula to find the area of a triangle with sides a=9a = 9 cm, b=12b = 12 cm, and c=15c = 15 cm.
  3. A triangle has sides a=5a = 5 cm, b=7b = 7 cm, and c=10c = 10 cm. Determine its area.

Conclusion

Understanding how to calculate the area of a triangle using trigonometry rules expands your problem-solving toolkit. Whether using the sine rule or Heron’s formula, these methods are essential for tackling complex geometry problems in high school mathematics and beyond.